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Abstract. Fire suppression has increased fuel loadings and fuel continuity in many forested ecosystems, resulting
in forest structures that are vulnerable to catastrophic fire. This paper describes the statistical properties of models
developed to describe the spatial variability in forest fuels on the Black Hills National Forest, South Dakota. Forest
fuel loadings (tonnes/ha) are modeled to a 30 m resolution using a combination of trend surface models to describe
the coarse-scale variability in forest fuel, and binary regression trees to describe the fine-scale variability associated
with site-specific variability in forest fuels. Independent variables used in the models included various Landsat
TM bands, forest class, elevation, slope, and aspect. The models accounted for 55% to 72% of the variability in
forest fuels. In spite of having highly skewed distributions, cross-validation showed the models to have nominal
prediction bias. This paper also evaluates the feasibility of using the estimation error variance to explain estimation
uncertainty. The models are allowing us to study the influence of small-scale disturbances on forest fuel loadings
and diversity of resident and migratory birds on the Black Hills National Forest.
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Introduction

Forest managers have utilized models to aid in predicting
fire behavior and to map varying fire spread scenarios dur-
ing a given time period. FARSITE (Finney 1998), BEHAVE
(Andrews 1986) and other fire behavior and growth decision
support systems are based on a mathematical model for quan-
tifying fire spread in surface fuels developed by Rothermel
(1972). This model is composed of a series of calculations for
heat required for ignition, propagating flux, reaction inten-
sity, and effect of wind and slope.Weather and fuel parameters
are used as input for these calculations. Spatial properties of
the composition, quantity, size, compactness, and arrange-
ment of fuels are major factors that determine initiation,
intensity, and spread of forest wildfires (Pyne et al. 1996).
Wildfire fuels are commonly split into three classes: aerial
fuels, ground fuels, and surface fuels. Of these, surface fuels
have the greatest influence on fire behavior. Surface fuels
include trees less than 1.8 m tall, shrubs, grasses and forbs,
litter, and coarse woody debris (Pyne et al. 1996). Small-scale
disturbances alter abundance and composition of the stand-
ing dead tree and coarse woody debris components of surface
fuels (Lundquist and Beatty 2002).

A fuel model is a ‘stylized and simplified description of
fuel for a mathematical fire behavior model’ (Pyne et al.
1996), which includes a profile of characteristics used as
input to fire models. According to Anderson (1982), the most
important fuel characteristics are fuel load by size class; mean
size and shape of each size class; compactness or bulk den-
sity; horizontal continuity; vertical arrangement; moisture
content; and chemical content. Fuel load and size distribu-
tion and compactness determine fire sustainability; spatial
continuity determines fire spread; and vertical pattern deter-
mines potential for fire to spread into the overstory canopy
(Anderson 1982). The varying characteristics of fuels make
them complex and diverse components of the ecosystem
(Burgan 1987). Comprehensive fuel models take consider-
able sampling effort, and are largely impossible for develop-
ing spatial models based on ground surveys. To simplify and
standardize fuel assessments, 13 standardized fuel models
were established (Albini 1976). Because these fuel models
are not correlated with vegetation type and actual condi-
tions, estimates based on them commonly result in significant
errors.
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Because of the difficulty and expense in developing the
required layers for comprehensive models, remote sensing
has commonly been used to generate data for these models
(Chuvieco and Salvas 1996). Typically, satellite imagery or
aerial photographs have been used to map vegetation charac-
teristics, and then assign fuel models to the various vegetation
classes (Kourtz 1977; Miller and Johnston 1985; Wilson et al.
1994; Mark et al. 1995). The disadvantage of this approach is
that the various components of forest structure are not always
correlated with existing vegetation characteristics.

The use of remote sensing coupled with spatial analysis has
been successful in detecting, predicting, and modeling total
living and dead biomass in grasslands and shrublands (Friedl
et al. 1994; Millington et al. 1994). Such approaches have
had limited success in forest ecosystems because the ground
is often obscured from view by the forest canopy, thereby
making it difficult to discriminate among different types and
amounts of fuel on the ground. Satellite imagery has also
been used to study changes in landscape patterns caused by
wildfires in several different forest types (Racine et al. 1985;
Syrjanen et al. 1994; Turner et al. 1994; Razafimpanilo et al.
1995). Other studies have examined the application of GIS
in predicting spatial spread of fires (Green et al. 1995; Perry
et al. 1999; Keane et al. 2001). Several studies have examined
the use of satellite images to develop fuel models (Rabii 1979;
Shasby et al. 1981; Salazar 1982; Agee and Pickford 1985;
Miller and Johnston 1985; Burgan et al. 1998; Roberts et al.
1998).

The only reliable method of estimating forest fuels is to
collect intensive field measurements, which are time consum-
ing and lack adequate replication. Such data are generally
summarized on a stand level in a GIS representing vegeta-
tion types. Because these scales are too coarse for fine-scale
fire spread models, they may produce unrealistic results. In
some instances, field data have been spatially interpolated to
generate locally oriented GIS-based fire danger models that
cover small areas at a high spatial resolution (Chuvieco and
Salvas 1996). Keane et al. (2001) provides an excellent review
and discussion of past, present, and future approaches for
modeling forest fuels for fire management at multiple scales.

We recently developed a spatial model that used satel-
lite imagery and field data to predict diversity of migratory
birds in the Black Hills. This method enabled the genera-
tion of spatial models that predicted bird diversity over a
broad range of scales, from sub-stands to multiple water-
sheds. In the study described below, we adapt this method to
develop models describing the fine-scale spatial variability
of forest fuels over the entire Black Hills National Forest,
South Dakota. This study is part of an examination into the
relative influences of diseases on fuel loading and their rela-
tive importance compared to other co-occurring disturbances.
Our aim here was to develop a reliable tool for predicting the
distribution of fuel loadings across both fine and broad spa-
tial scales using remotely sensed data, and spatial models.

Sample plot location
Elevation (m)

966–1207
1208–1449
1450–1691
1692–1933
1934–2175

10 0 10 20 Kilometers

Fig. 1. Location of 151 sample plots overlaid on a digital elevation
model of the Black Hills National Forest.

Our approach incorporates new statistical techniques, which
are cross-validated to provide error estimates and classifica-
tion accuracies. This is an important aspect of this paper in
that it is important to be able to understand the type of errors
associated with models being used in any future analysis.

Methods

Study site

This study was conducted in the Black Hills National For-
est in west central South Dakota, USA. The Black Hills are
the easternmost outlier of the Rocky Mountains and cover
∼650 000 ha. Elevation reaches 2300 m (Froiland 1990).
Forests occur between 966 m and 2175 m (Fig. 1). Precip-
itation averages ∼750 mm per year, mostly as rain during
summer months. Pinus ponderosa Douglas ex P. Laws is
the dominant tree species. At the higher elevations, Picea
glauca (Moench) Voss is the dominant tree species, while
both Populus tremuloides Michx. and Quercus macrocarpa
Michx. (Hoffman and Alexander 1987) dominate in the
northern part of the forest.

Sample plots

A total of 151 sample plots each 30 m × 30 m were randomly
located throughout the Black Hills National Forest using a
stratified design (Fig. 1). Using an existing vegetation map,
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the forest was stratified into broad forest classes (pine, spruce,
oak, aspen, and meadows). Using an initial sample of 50
plots, the variability in each stratum was determined. This
information was used to allocate the remaining sample plots
proportional to the variability observed in forest structure and
fuel loadings. Sample plots were oriented in a north–south
direction and georeferenced using GPS. A 42 m transect was
established diagonally across the sample plots from the south-
west corner to the north-east corner. Three 1 m transects were
established 7 m, 21 m, and 35 m along the 42 m transect. Data
collected on the 30 m × 30 m sample plots included average
tree height (m), height to the base of the live crown (m),
canopy closure (%), average height (m), diameter (m), num-
ber of shrubs per ha, and total tree basal area (m2/ha). The
information on shrubs was used to estimate shrub volumes
per ha, which included air space.

Estimation of fuel loading

Using procedures developed by Brown et al. (1982), we
used planar intersect sampling to estimate fuel loadings
in tonnes/ha for the following size classes: <0.6 cm; 0.6–
2.5 cm; 2.5–7.6 cm; and >7.6 cm sound and dead. Fuel
loadings in size classes under 7.6 cm were estimated by count-
ing the number of intercepts on the three 1 m transects by
species group (pine, spruce, aspen hardwood). Fuel loadings
for woody material greater than 7.6 cm were estimated by
measuring the diameter of all intercepts on the 42 m transect,
by species group. In addition to the intercept data, informa-
tion was collected on the depth (cm) of the litter and duff on
the three 1 m transects, along with estimates of the height of
the woody fuels (cm) above the forest floor. All fuel loading
estimates were adjusted for slope and species group.

GIS and Landsat TM data

We derived GIS grids of elevation, slope, and aspect from dig-
ital elevation models using ArcView® (ESRI 1998) to a 30 m
spatial resolution, corresponding to the resolution of the field
data. Grids of spectral bands 1–5, 6l, 6h, 7 and 8 of a cloud-
free, 2001 Landsat TM image corresponding to the timing of
the field data collection was also created. Spectral bands 6l
and 6h were thermal bands (60 m resolution), while band 8
was a panchromatic image (5 m resolution).These latter three
bands were resampled [Resample function, nearest neighbor,
Grid Module (ARC/INFO®)] (ESRI 1995) to a 30 m spatial
resolution, corresponding to the resolution of the field data.
A grid of six vegetation classes, modeled to a 30 m spatial
resolution, was derived from an independent dataset using
a binary classification tree (Breiman et al. 1984). Individ-
ual class accuracy of the vegetation model, were: pine, 97%;
pine/deciduous, 96%; spruce, 90%; riparian, 95%; aspen/
deciduous, 93%; meadows/grass, 87%. Values for all grid
layers of information were derived for each 30 m sample plot
using Avenue (ESRI 1998) code.

Modeling forest fuels

Modeling of forest fuels was accomplished in two stages. In
the first stage, multiple regression analysis (OLS: Reich and
Davis 1998) was used to explore the coarse-scale variability
in forest fuels as a function of elevation, slope, aspect, and
Landsat TM bands. To account for differences among for-
est classes, dummy variables were introduced in the models
as interactions with elevation, slope, aspect, landform, and
the eight Landsat bands. For each component of forest fuels
modeled, we used a stepwise procedure to identify the best
subset of independent variables to include in the regression
models.

In the second stage, we modeled the error (i.e. residuals)
associated with the regression models using binary regression
trees.A binary regression tree is a non-parametric approach to
regression that compares all possible splits among the inde-
pendent (continuous) variables using a binary partitioning
algorithm that maximizes the dissimilarities among groups.
Once the algorithm partitions the data into new subsets, new
relationships are developed, assessed, and split into new sub-
sets. The algorithm recursively splits the data in each subset
until either the subset is homogeneous or the subset contains
too few observations (e.g. <5) to be split further. Interpola-
tion using RTs is relatively insensitive to sparse data. Inde-
pendent variables considered in the RT included elevation,
slope, aspect, landform, Landsat TM bands, and forest class,
the latter being treated as a categorical variable. To avoid
over-fitting the models, a 10-fold cross-validation procedure
(Efron and Tibshirani 1993) was used to identify the tree size
that minimizes the total deviance associated with the trees.

Grids representing the various forest fuel components
were generated for the best-fitting regression model using
the model’s parameter estimates. Similarly, grids represent-
ing the error in each regression model were generated by
passing each grid for the appropriate independent variable
through the regression trees. The final predicted surfaces of
the different components forest fuels were obtained from the
sum of the two grids.

Semi-variograms were used to evaluate spatial depen-
dencies among the residuals from the various forest fuel
models. If the residuals exhibited spatial dependencies, a spa-
tial autoregressive model was used to obtain generalized least
squares estimates of the regression coefficients associated
with the TS model (Upton and Fingleton 1985). The model
residuals were reevaluated to ensure the removal of the spatial
dependencies. In fitting the spatial autoregressive models, a
spatial weight matrix (i.e. a block diagonal matrix) based on
inverse distance weighting was used to represent the spatial
dependencies among the sample plots.

The effectiveness of the final models was evaluated
using a goodness-of-prediction statistic (G) (Agterberg 1984;
Kravchenko and Bullock 1999; Guisan and Zimmermann
2000; Schloeder et al. 2001). The G-value measures how
effective a prediction might be relative to that which could
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have been derived by using the sample mean (Agterberg
1984):

G =
(

1 −
{

n∑
i=1

[
Zi − Ẑi

]2
/ n∑

i=1

[
Zi − Z

]2

})
, (1)

where Zi is the observed value of the ith observation, Ẑi is the
predicted value of the ith observation, and Z is the sample
mean. A G-value equal to 1 indicates perfect prediction, a
positive value indicates a more reliable model than if one
had used the sample mean, a negative value indicates a less
reliable model than if one had used the sample mean, and a
value of zero indicates that the sample mean should be used
to estimate Z.

Model evaluation

A 10-fold cross-validation (Efron and Tibshirani 1993) was
used to estimate the prediction error for each forest fuel com-
ponent. The data were split into K = 10 parts consisting of
∼15 sample plots. For each part, the models were fitted to
the remaining K − 1 = 9 parts of the data. The fitted model
was used to predict the part of the data removed from the
modeling process. This process was repeated 10 times so that
each sample plot was excluded from the model fitting step
and its response predicted. The prediction errors can then be
inferred from the predicted minus actual values. Repeating
this process over many deleted subsets allows an assessment
of the variability of prediction error. While it may be desirable
to assess the uncertainty in the models using an independent
dataset, this may not always be feasible because of time and
cost constraints. The cross-validation procedures used in this
paper have become a popular method of assessing accuracy
and prediction since the articles by Stone (1974) and Geisser
(1975).

To evaluate the effectiveness of the models, we com-
puted various measures of prediction error. Prediction bias
(Williams 1997) was calculated for each validation dataset
as a percentage of the true value. Accuracy (Kravchenko and
Bullock 1999; Schloeder et al. 2001) was measured by the
mean absolute error (MAE), which is a measure of the sum
of absolute residuals (i.e. actual minus predicted) and the
root mean squared error (RMSE), which is the square root
of the sum of squared residuals. Small MAE values indi-
cate a model with few errors, while small values of RMSE
indicate more accurate predictions on a point-by-point basis
(Schloeder et al. 2001). To assess the estimation uncertainty
in the models (Isaaks and Srivastava 1989), we calculated the
estimation error variance (EEV), σ̂2∗

i for each observation in
the dataset:

σ̂2∗
i = MSE [(X∗

i )
′(X′X)(X∗

i ) + 1]
+ 2MSE(RT) + 2Cov(Ŷ , η̂), (2)

where MSE is the regression mean squared error for the
TS model fitted using K−1 = 9 parts of the data, X is a

matrix of independent variables used in fitting the model,
X∗

i is a vector of independent observations not used in fitting
the model, MSE(RT) is the mean squared error of the RT
used to describe the error in the TS model, and Cov(Ŷ , η̂)
is the covariance between the estimated values (Ŷ ), from
the TS model and the predicted residuals (η̂) . The consis-
tency between the EEV and the observed estimation errors
(i.e. true errors), e∗

i = (Zi − Z∗
i ), was calculated using the

standard mean squared error (SMSE) (Hevesi et al. 1992):

SMSE = 1

n

n∑
i=1

(e∗
i )

2

σ̂2∗
i

. (3)

EEVs were assumed consistent with true errors if the SMSE
fell within the interval [1 ± 2(2/n)−1/2] (Hevesi et al. 1992).
Paired t-tests (α = 0.05) were used to test for differences
between the mean estimation errors and zero. The EEVs
were also used to construct 95% confidence intervals around
individual estimates. Coverage rates were calculated as the
proportion of individual confidence intervals that contained
the true value.

Custom fuel models

A k-means clustering algorithm was used to partition the sam-
ple data of fuel loadings into three groups to minimize the
within-group sum of squares (Hartigan andWong 1979).Vari-
ables used in the analysis included the <0.6 cm; 0.6–2.5 cm;
2.5–7.6 cm fuel loadings, fuel height and shrub volume. The
first three variables are important components required to
define custom fuel models in FARSITE. The clustering algo-
rithm was then used to generate a GIS grid of the Black Hills
where each forested pixel was assigned to one of three fuel
classes. We did this as a demonstration of how the various GIS
grids developed in this paper could be used in describing the
spatial distribution of fuel loadings and are not intended to
represent valid fuel models.

Results

Modeling forest structure

Summary statistics for fuel loading data used in develop-
ing the models are provided in Table 1. The majority of the
sample distributions were highly skewed to the right, which
influenced the final fit of the models. It was not possible to
transform the data to sufficiently remove this skewness. How-
ever, residuals plots, and plots of predicted v. observed fuel
values did not show any trends to suggest a systematic bias
in any of the models.

Table 2 summarizes the independent variables used to
describe the coarse-scale variability in fuel loadings. Fuel
loadings were linearly correlated with the topographic and
Landsat TM data, and these linear relationships varied sig-
nificantly among forest type. For example, classes of fuel
loadings observed in spruce and aspen stands varied sig-
nificantly from those observed in pine stands. All of the
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Table 1. Summary statistics of observed and estimated forest fuels for the Black Hills National Forest from 10-fold cross-validation

Statistic Fuel height (cm) Litter (cm) Duff (cm) 0–0.6 cm (t/ha)

Fuel Modeled Fuel Modeled Fuel Modeled Fuel Modeled
sampled estimates sampled estimates sampled estimates sampled estimates
data data data data

N 151 151 151 151 151 151 151 151
Mean 5.84 6.43 3.53 3.73 2.23 2.23 0.32 0.36
s.d. 9.52 7.39 2.54 1.98 1.75 1.45 0.47 0.38
CV% 162.7 115.1 72.0 53.2 78.7 64.3 153.2 108.5
Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
First quantile 0.84 1.78 2.11 2.44 0.84 1.19 0.02 0.07
Median 2.79 3.33 3.38 3.69 1.70 2.01 0.16 0.22
Third quantile 5.61 9.32 4.65 4.65 3.38 3.38 0.36 0.49
Maximum 64.33 54.66 23.39 11.91 9.32 5.59 2.46 2.01
Bias% −9.68 −5.54 0.0 −13.57

0.6–2.5 cm (t/ha) 2.5–7.6 cm (t/ha) <7.6 cm (t/ha) >7.6 cm (t/ha)

N 151 151 151 151 151 151 151 151
Mean 3.50 4.06 14.28 18.18 17.95 19.05 14.05 14.32
s.d. 6.14 5.09 23.16 29.32 28.15 20.17 15.44 11.39
CV% 177.2 125.5 163.3 161.4 156.7 108.7 109.9 79.6
Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
First quantile 0.0 0.83 0.0 2.42 0.83 4.55 1.30 5.54
Median 1.43 3.27 5.33 8.00 7.82 11.07 9.06 12.69
Third quantile 3.97 4.75 17.04 21.36 18.91 25.98 20.55 21.25
Maximum 43.17 49.41 123.36 187.14 169.00 92.54 66.64 51.60
Bias% −16.02 −27.27 −6.04 −1.87

Table 2. Description of the multiple regression models for describing the coarse-scale variability in forest fuels on the Black Hills
National Forest

Circles indicate the inclusion of a variable as a main effect, squares indicate an interaction between forest classes and topographic and Landsat TM
bands. Forest classes were treated as dummy variables with pine being the default forest type

Model TopographyA Landsat TM bandsB Forest classC

E S A B1 B2 B3 B4 B5 B6L B6H B7 B8 P R SP AS M

Duff (cm) • •� • • � � � • • � � �
Litter (cm) � � � � � • • � � � �
Fuel height (cm) • � � � � � • � �
0–0.6 cm (t/ha) � � • � �
0.6–2.5 cm (t/ha) � � � � � � � • � �
2.5–7.6 cm (t/ha) • � � � • � �
<7.6 cm (t/ha) � � � � � • � • � �
>7.6 cm (t/ha) � •� � �• • • � � � �

AE, elevation; S, slope; A, aspect.
BB1, band 1; B2, band 2; B3, band 4; B5, band 5; B6L, band 6 low; B6H, band 6 high; B7, band 7; B8, band 8.
CP, pine; R, riparian; SP, spruce; AS, aspen/deciduous; M, meadows/openings.

topographic, Landsat TM, and forest class variables (Table 3)
were also used in the regression trees to describe the error
in one or more of the regression models. Notably, however,
none of the forest classes contributed to classifying residuals
in the models for the depth of the duff and litter, indicating
that the regression model for these components accounted
for all the structural variability due to species composition.
Forest classes were important in nearly all other models of
fuel loadings. The tree sizes selected to minimize the total
deviance in the regression trees ranged from 23 to 49 splits.

The overall contribution of the models (Table 4) in describ-
ing forest fuels varied with the model. The regression models
alone explained 34% (<0.6 cm fuels) to 45% (>7.6 cm fuels)
of the observed variability in fuel loadings. The regression
trees accounted for an additional 19% (0.6 cm–2.5 cm fuels)
to 35% (<7.6 cm fuels) of the unexplained variability in
the TS models. Overall model performance ranged from a
low of 0.55 for <0.6 cm fuels to a high of 0.71 for 2.5–
7.6 cm fuels. The remaining six models had G-values ranging
from 0.61 to 0.69. The final models are displayed in Fig. 2.
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Table 3. Variables (circles) used in the binary regression trees to describe the error in the trend surface model of components of forest fuels
on the Black Hills National Forest

Forest type was treated as a categorical variable in the regression trees

Model TopographyA Landsat TM bandsB Forest classC

E S A B1 B2 B3 B4 B5 B6L B6H B7 B8 P R SP AS M

Duff (cm) • • • • • • • • •
Litter (cm) • • • • • • • • •
Fuel height (cm) • • • • • • • • • • •
0–0.6 cm (t/ha) • • • • • • • • • • • •
0.6–2.5 cm (t/ha) • • • • • • • • • • •
2.5–7.6 cm (t/ha) • • • • • • • • • • • • •
< 7.6 cm (t/ha) • • • • • • • • • • • • • •
> 7.6 cm (t/ha) • • • • • • • • • • • • •
AE, elevation; S, slope; A, aspect.
BB1, band 1; B2, band 2; B#, band 4; B5, band 5; B6L, band 6 low; B6H, band 6 high; B7, band 7; B*, band 8.
CP, pine; R, riparian; SP, spruce; AS, aspen/deciduous; M, meadows/openings.

Table 4. Overall model performance (G-statistic) of the multiple
regression models (TS) and the use of binary regression trees (RT)
in describing the errors in the multiple regression models of forest

fuels on the Black Hills National Forest

Model TS RT TS + RT

Fuel height (cm) 0.355 0.261 0.616
Litter (cm) 0.348 0.264 0.612
Duff (cm) 0.345 0.324 0.669
0–0.6 cm (t/ha) 0.338 0.210 0.548
0.6–2.5 cm (t/ha) 0.417 0.194 0.611
2.5–7.6 cm (t/ha) 0.431 0.282 0.713
Small (<7.6 cm) (t/ha) 0.346 0.349 0.695
Large (>7.6 cm) (t/ha) 0.447 0.221 0.668

Looking at these figures one can see that some fuel classes
(i.e. 0.6–2.5 cm, 2.5–7.6 cm, and fuel height) have similar
spatial patterns. These patterns follow trends in elevation and
species distribution.

Model evaluation

Prediction bias was nominal (Table 5) for all models. Mini-
mum, maximum, and quartile values showed that estimated
and observed value distributions were similar for all mod-
els. Estimation errors for the depth of the duff and litter
had a similar spread in the estimation errors. In terms of
the fuel models, the 2.5–7.6 cm, <7.6 cm and >7.6 cm fuel
models had the largest spread in terms of the estimation
errors, while the <0.6 cm fuel model had the least spread.The
mean estimation errors did not differ significantly from zero
(P-value ≥ 0.050). The MAE was smaller than the RMSE
for all models indicating that, in general, the models are
more accurate in predicting regional or global means than
on a point-by-point basis.

SMSE results (Table 5) showed that the computed EEVs
were statistically consistent with the true errors for all mod-
els, except for the 2.5–7.6 cm fuels, as they were within the
interval [0.7698–1.2302] (Hevesi et al. 1992). This suggests

that EEVs could be used to assess estimates of uncertainty
for new observations. The EEV for the 2.5–7.6 cm fuels was
lower than the true error (SMSE > 1) and, therefore, under-
estimated the true error. The 0.95 confidence coverage rates
ranged from a low of 0.90 for the 2.5–7.6 cm fuel model to
a high of 0.99 for the litter model. Half of the model had
coverage rates less than 0.95. This suggests that confidence
intervals constructed using the EEV may not be large enough
to insure a 95% confidence interval around our estimates.

Custom fuel models

To better reflect fire behavior, models such as FARSITE allow
the user to define custom fuel models. Important components
required to define such models include the <0.6 cm, 0.6–
2.5 cm, and 2.5–7.6 cm fuel loadings, which were modeled
in this paper. Using these variables and information on shrub
volumes and fuel height, we identified three fuel classes.
Table 6 summarizes the within-group statistics of the vari-
ables used in the clustering. The fuel classes were number
20, 21 and 22, respectively. Figure 3 depicts the spatial dis-
tribution of the three fuel classes for a 2700 ha portion of the
Black Hills National Forest. Fuel class 21 covers ∼77% of
the forested area and is characterized by relatively low fuels.
Fuel class 20 covers ∼19% of the forested area tends to have a
higher fuel loading in the 2.5–7.6 cm class and slightly higher
volume of shrubs as compared to fuel class 21. Fuel class 22
covers only 4% of the area, but tends to have the highest
amounts of fuel. To be able to use these fuel classes in the
program FARSITE, we would also need information on
the area-to-volume ratio of fuels, which was not collected
at the time of this study. This information could have been
collected, along with other required information and modeled
using the procedures presented in this paper. One could also
develop GIS grids for canopy closure (required by FARSITE),
average tree height, height to the base of the live crown and
use this information as input to FARSITE to better describe
forest conditions.
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5.1–10.2
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Fig. 2. Spatial distribution of (A) depth of duff (cm), (B) depth of litter (cm), and (C) fuel height (cm), and forest fuel loadings (t/ha) for the
following size classes (cm): (D) <0.6, (E) 0.6–2.5, (F) 2.5–7.6, (G) <7.6, and (H) >7.6. Similarities in the spatial distribution of forest fuels (C, E,
F, G) are due to a strong linear correlation with topographic variables such as elevation and slope, and the type of forest (pine, spruce, aspen).

Discussion

Our models of forest fuels can be very useful in that they
provide detailed estimates of the structural components of
forest fuels at a fine-scale (30 m resolution) with relatively
high accuracy. These models, in general, produce greater
accuracy and spatial resolution than traditional techniques
based primarily on remotely sensed data, such as Landsat
TM data, which are limited to what the sensors can directly

detect. Our results are also superior to traditional methods of
mapping forest fuels in that they are generally insufficient at
predicting the spatial variability in forest fuels within a given
stand.

Our models describe 55% (0–0.6 cm fuels) to 71% (2.5–
7.6 cm fuels) of the spatial variability in the components
of forest fuels observed on the field plots. The poor abil-
ity of some of the models to describe the various components
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0
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G

0
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�9.0

Tonnes/ha

Fig. 2. (Continued)

of forest fuels may be due, in part, to certain types of man-
agement activities on the forest, such as controlled burning
and thinning. The models assume that similar forest stands
have similar characteristics with respect to forest fuels. It may
be possible to include past management activities in the
models to account for this variability and to improve the
overall accuracy of the models. All models provided unbi-
ased (P-value > 0.05) or marginally biased estimates of forest

fuels. In the latter models, the bias was not large enough to
limit the use of the models for predictive purposes.

Results of the 10-fold cross-validation indicated that the
estimated error variances for the models provided statistically
consistent estimate of the true prediction errors associated
with the models.These results suggest that the estimated error
variances could be used to assess estimates of uncertainty
when the models are applied to non-sampled plot locations.
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Table 5. Summary statistics of estimation errors of the forest fuels models for the Black Hills National Forest based on the 10-fold
cross-validation

IQR = interquartile range; MAE = mean absolute error; RMSE = root mean square error; SMSE = standardized mean square error

Statistic Fuel height Litter Duff 0–0.6 cm 0.6–2.5 cm 2.5–7.6 cm <7.6 cm >7.6 cm
(cm) (cm) (cm) (t/ha) (t/ha) (t/ha) (t/ha) (t/ha)

N 151 151 151 151 151 151 151 151
Mean −0.59 −0.20 0.0 −0.04 −0.56 −3.90 −1.10 −0.27
IQR 6.37 2.19 2.34 0.45 4.77 19.68 20.02 17.04
MAE 6.86 1.90 1.50 0.34 4.68 20.13 18.25 12.71
RMSE 11.40 2.87 1.98 0.51 8.16 36.36 28.56 17.64
SMSE 0.93 1.21 0.86 0.93 1.21 1.40 0.81 0.87
0.95 confidence 0.93 0.99 0.95 0.93 0.95 0.90 0.95 0.93
coverage rate

Table 6. Summary statistics of variables used to identify three groups of forest fuels using a k-means clustering
algorithm

Fuel model Fuel height 0–2.5 cm fuels 0.6–2.5 cm fuels 2.5–7.6 cm fuels Shrub volume
(cm) (t/ha) (t/ha) (t/ha) (t/ha)

20 8.2 0.8 9.4 45.3 24.8
21 4.3 0.3 2.1 6.1 18.4
22 29.0 1.3 24.2 116.7 19.1

Fuel model

Nonforested 20 21 22

Fig. 3. Spatial distribution of three custom fuel classes for a 27 000 ha
portion of the Black Hills National Forest. Fuel classes were based on
the amount of 0–0.6 cm, 0.6–2.5 cm, and 2.5–7.6 cm fuels, fuel height
(cm) and shrub volume (m3/ha).

The ability to calculate estimation uncertainties allows
us to develop GIS layers showing the computed estimation
errors as well as place confidence intervals around our esti-
mates. We assume that the estimation uncertainties are at their

lower limit because the data used in this study were assumed
to be error free. Other sources of errors that could have influ-
enced the performance of the models include the sparseness
of the field plots, errors in the forest classes and registrations
errors with the field plots.

The models presented in this paper can be used to obtain
estimates and associated standard errors or prediction for any
specified geographical region (i.e. forest stand, management
unit forest) within the Black Hills National Forest using the
appropriate formula. This approach to estimating forest fuels
is more cost effective than estimates based on field sampling
alone. Another disadvantage of relying solely of field sam-
pling is that there may, or may not be, sample plots available
in every forest stand, especially if the stands are difficult to
reach, small in size, or irregularly shaped.

Our initial interest in developing and evaluating these
models was aimed at characterizing and quantifying the rela-
tive impacts of diseases and other small-scale disturbances on
fuel loading. The characteristics of various fuel components
depend to some extent on how fuel was formed (Lundquist
and Beatty 2002). Spatial distributions in space and time
probably mirror their causes, but determining causes can be
difficult.Tree diseases and other small-scale disturbances can
be major contributors to wildfire fuels, and certainly enhance
spatial and temporal variability of fuels within and among for-
est stands. According to Keane et al. (2001), such variability
is a major hurdle to generating accurate distribution maps
for fuels.

Conclusions

This study presents a detailed description of a framework for
mapping fuels based on spatially independent variables and
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for characterizing the error inherent in the technique. Most
wildfires are less than the size of managed stands. The most
troublesome and destructive fires are much larger. Predict-
ing spread and intensification of forest fires requires detailed
information on the spatial distribution of forest fuels at a fine
enough spatial resolution to accurately describe the dynam-
ics of a fire and at a large enough scale to include potential
routes of spread across the landscape. This study developed
a series of models describing the spatial distribution of fuel
loading on the Black Hills National Forest to a 30 m reso-
lution by combining analyses of satellite images and field
surveys. The models provide unbiased estimates of the var-
ious components of forest fuels as well as estimates of the
prediction variance associated with individual estimates.

Good management requires decision support tools that
are not only reliable, but also economical and timely. Fire
spread models and other decision support systems are used to
develop strategies about managing wildfires. Remote sensing
enables a way of interpolating conditions at locations that
are difficult or impossible to physically inspect. Although the
statistical approach used to generate the spatial models would
need adaptation to make them user friendly, these models
should eventually be useful to managers that need predictions
of fuel load distributions to make decisions about fire hazards
and risks.

The low accuracy associated with existing approaches for
modeling forest fuels is attributed to insufficient or low qual-
ity field data used in mapping vegetation types. A major
limitation of fuels mapping directly from remotely sensed
imagery is the inability for passive sensing instruments to
penetrate the canopy. Also, existing techniques cannot pro-
vide estimates of uncertainty associated with their estimates.
By modeling the field data as a function of topographic and
remotely sensed imagery, it is possible to produce accurate
estimates of forest fuels across vegetation types to a high
degree of spatial resolution. It is also possible to model com-
ponents of forest structure to the same spatial resolution as
the fuel models. This would ensure that the layers required
by a particular fire spread model all have the same spatial
resolution thus ensuring consistent estimates.
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